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We prove analyticity theorems in the coupling constant for the Hubbard model
at half-filling. The model in a single renormalization group slice of index i is
proved to be analytic in l for |l| [ c/i for some constant c, and the skeleton
part of the model at temperature T (the sum of all graphs without two point
insertions) is proved to be analytic in l for |l| [ c/|log T|2. These theorems are
necessary steps towards proving that the Hubbard model at half-filling is not a
Fermi liquid (in the mathematically precise sense of Salmhofer).
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1. INTRODUCTION

Constructive renormalization group approach to the Fermi systems of
condensed matter (1–3) is an ongoing program to study quite systematically
the properties of interacting non-relativistic Fermions at finite density in
one, two or three dimensions. In one dimension interacting Fermions have
been proved to form a Luttinger liquid until zero temperature. (4, 5) The
simplest interacting two-dimensional model for Fermions, namely the
jellium model, has been recently shown to be a Fermi liquid (6, 7) above the
critical temperature, in the sense of Salmhofer’s criterion. (8) The next most
natural model in two dimensions is the Hubbard model on a square lattice
at half-filling considered in this paper. This model presents the interesting
features of a square Fermi surface with nesting vectors and van Hove sin-
gularities. It has also particle-hole symmetry, which preserves the Fermi
surface under the renormalization group flow. For all these reasons it is the



best candidate for a first example in two dimensions of a Fermionic system
which is not a Fermi liquid, but rather some kind of Luttinger liquid with
logarithmic corrections.

To study the Fermi versus Luttinger behavior according to Salmhofer’s
criterion, one must prove analyticity in the coupling constant in a domain
above some critical temperature, and study whether the first and second
derivatives of the self-energy in Fourier space are uniformly bounded or
not in that analyticity domain.2 This analysis may be conveniently decom-

2 In two or more dimensions perturbation theory can generically work only above some criti-
cal temperature, so the Fermi liquid behavior cannot persist until zero temperature, except
for very particular models with a Fermi surface which is not parity invariant. There is an
ongoing program to study these models in two dimensions. (9–11)

posed into four main steps of increasing difficulty:

(A) control of the model in a single slice;

(B) control of the model without divergent subgraphs in many slices;

(C) control of the two point function renormalization;

(D) study of the first and second derivatives of the self-energy.

This program is completed only at the moment for the two-dimensio-
nal jellium model: steps A and B were performed in ref. 12 and steps C and
D in ref. 7. For the three dimensional jellium model, steps A and B have
been successively completed in refs. 13 and 14. For the half-filled Hubbard
model we perform in this paper steps A and B. We use an angular decom-
position of the model into ‘‘sectors’’ that are very different from the jellium
case. We write the momentum conservation rules in terms of these sectors.
Then we prove that the sum over all graphs with momenta restricted to the
ith slice of the renormalization group is analytic for |l| [ const/i (step A).
We prove two theorems corresponding to step B. The first one states that
the completely convergent part of the theory, namely the sum over all
graphs which do not contain two-particle and four particle subgraphs with
external legs closer to the singularity than their internal legs, is analytic for
|l log T| [ const. The second result states that the ‘‘biped-free’’ part of the
theory, namely the sum over all graphs which do not contain two-particle
subgraphs with external legs closer to the singularity than their internal
legs, is analytic for |l log2 T| [ const. We remark that this last domain of
analyticity is the expected optimal domain for the full theory. We remark
also that these domains are smaller than the domains for the jellium case
which are respectively |l| [ const for the single slice or completely convergent
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theory, and |l log T| [ const for the biped free part of the theory or the full
theory with an appropriate mass-counterterm.

Finally we remark also that since we expect the half-filled Hubbard
model not to be a Fermi liquid, step D in that case should consist of a
proof that the second momentum derivative of the self-energy is not uni-
formly bounded in that domain of analyticity. This requires a lower bound
showing the divergence of this quantity near the corner l, TQ 0 rather
than an upper bound.

For a very simple introduction to constructive Fermionic theory, we
recommend ref. 15. We will also use without too much further explanations
the Taylor tree formulas that are developed in detail in ref. 16. It would
also be useful if the reader has already some familiarity with the basics of
multiscale expansions (17) and with constructive Fermionic renormalization,
as, e.g., developed in ref. 18; but we will try to remain as simple and self-
contained as possible.

2. MODEL AND NOTATIONS

A finite temperature Fermionic model has a propagator C(x, x̄) where
x=(x0, xF), which is translation invariant. By some slight abuse of nota-
tions we may therefore write it either C(x−x̄) or C(x, x̄), where the first
point corresponds to the field and the second one to the antifield. This
propagator at finite temperature is antiperiodic in the variable x0 with
antiperiod 1

T , hence its Fourier transform depends on discrete values (called
the Matsubara frequencies):

k0=
2n+1
b
p, n ¥ Z, (2.1)

where b=1/T (we take (=k=1). Remark that only odd frequencies
appear, because of antiperiodicity.

The Hubbard model lives on the square lattice Z2, so that the three
dimensional vector x=(x0, xF) is such that xF=(n1, n2) ¥ Z2. From now on
we write v1 and v2 for the two components of a vector vF along the two axis
of the lattice.

At half-filling and finite temperature T, the Fourier transform of the
propagator of the Hubbard model is:

Ĉab(k)=dab
1

ik0−e(kF)
, e(kF)=cos k1+cos k2, (2.2)
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where a, b ¥{‘ , a} are the spin indices. The vector kF lives on the two-
dimensional torus R2/(2pZ)2. Hence the real space propagator is

Cab(x)=
1

(2p)2 b
C
k0

F
p

−p
dk1 F

p

−p
dk2 e ikx Ĉab(k). (2.3)

The notation ; k0 means really the discrete sum over the integer n in
(2.1). When TQ 0 (which means bQ.) k0 becomes a continuous variable,
the corresponding discrete sum becomes an integral, and the corresponding
propagator C0(x) becomes singular on the Fermi surface defined by k0=0
and e(kF)=0. This Fermi surface is a square of side size `2 p (in the first
Brillouin zone) joining the corners (±p, 0), (0, ±p). We call this square
the Fermi square, its corners and faces are called the Fermi faces and
corners. Considering the periodic boundary conditions, there are really
four Fermi faces, but only two Fermi corners.

In the following to simplify notations we will write:

F d3k —
1
b
C
k0

F d2k, F d3x —
1
2
F
b

−b
dx0 C

xF ¥ Z
2
. (2.4)

In determining the spatial decay we recall that by antiperiodicity

C(x)=f(x0, xF) := C
m ¥ Z

(−1)m C0 1x0+
m
T
, xF 2 . (2.5)

where C0 is the propagator at T=0. Indeed the function f is antiperiodic
and its Fourier transform is the right one.

The interaction of the Hubbard model is simply

SV=l F
V
d3x 1C

a
k̄aka 2

2

, (2.6)

where V :=[−b, b]×VŒ and VŒ is an auxiliary finite volume cutoff in two
dimensional space that will be sent later to infinity. Remark that in (2.1)
|k0 | \ p/b ] 0 hence the denominator in C(k) can never be 0 at non zero
temperature. This is why the temperature provides a natural infrared cut-
off.

2.1. Scale Analysis

The theory has a natural lattice spatial cutoff. To implement the
renormalization group analysis, we introduce as usually a compact support
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function u(r) ¥ C.0 (R) (it is convenient to choose it to be Gevrey (19) of
order a < 1 so as to ensure fractional exponential decrease in the dual
space) which satisfies:

u(r)=0 for |r| > 2; u(r)=1 for |r| < 1. (2.7)

With this function, given a constantM \ 2, we can construct a partition of
unity

1=C
.

i=0
ui(r) -r ] 0;

u0(r)=1−u(r); ui(r)=u(M2(i−1)r)−u(M2ir) for i \ 1.

(2.8)

The propagator is then divided into slices according to this partition

C(k)=C
.

i=0
Ci(k) (2.9)

where

Ci(k)=C(k) ui[k
2
0+e

2(kF)]. (2.10)

(indeed k20+e
2(kF) \ T2 > 0).

In a slice of index i the cutoffs ensure that the size of k20+e
2(kF) is

roughlyM−2i. More precisely in the slice i we must have

M−2i [ k20+e
2(kF) [ 2M2M−2i. (2.11)

The corresponding domain is a three dimensional volume whose
section through the k0=0 plane is the shaded region pictured in Fig. 1.

Remark that at finite temperature, the propagator Ci vanishes for i \
imax(T) where M imax(T) 4 1/T (more precisely imax(T)=E(log M`2

pT /logM),
where E is the integer part), so there is only a finite number of steps in the
renormalization group analysis.

Let us state first our simplest result, for a theory whose propagator is
only Ci, hence corresponds to a generic step of the renormalization group:3

3 In the following we assume i \ 1. Indeed the first slice i=0 is somewhat peculiar because of
the unboundedness of the Matsubara frequencies, which requires a little additional care.
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Fig. 1. A single slice of the renormalization group.

Theorem 1. The Schwinger functions of the theory with propagator
Ci and interaction (2.6) are analytic in l in a disk of radius Ri which is at
least c/i for a suitable constant c:

Ri \ c/i. (2.12)

The rest of this section is devoted to definitions and preliminary
lemmas about sectors, their scaled decay and momentum conservation
rules. Although Theorem 1 applies to a single slice, its proof nevertheless
requires some kind of multiscale analysis, which is done in Section 3. Our
next results, Theorems 2 and 3, which bound the sum over all ‘‘convergent
contributions,’’ that is without divergent two point insertions, are slightly
more technical to state, but their proof is almost identical to that of
Theorem 1. They are postponed to Section 4.

As discussed in the introduction this result is a first step towards the
full analysis of the model in the regime |l log2 T| [ const., and a rigorous
proof that it is not a Fermi liquid in the sense of Salmhofer.
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2.2. Sectors

The ‘‘angular’’ analysis is completely different from the jellium case.
We remark first that in our slice, k20+e

2(kF) is of order M−2i, but this does
not fix the size of e2(kF) itself, which can be of orderM−2j for some j \ i. In
order for sectors defined in momentum space to correspond to propagators
with dual decay in direct space, it is essential that their length in the tan-
gential direction is not too big, otherwise the curvature is too strong for
stationary phase methods to apply. This was discussed first in ref. 12. This
leads us to study the curve (cos k1+cos k2)2=M−2j for arbitrary j \ i. We
can by symmetry restrict ourselves to the region 0 [ k1 [ p/2, k2 > 0. It is
then easy to compute the curvature radius of that curve, which is

R=
(sin2 k1+sin2 k2)3/2

|cos k1 sin2 k2+cos k2 sin2 k1 |
. (2.13)

We can also compute the distance d(k1) to the critical curve cos k1+
cos k2=0, and the width w(k1) of the band M−j [ |cos k1+cos k2 | [
`2 M.M−j. We can then easily check that

d(k1) 4 w(k1) 4
M−j

M−j/2+k1
, (2.14)

R(k1) 4
k31+M

−3j/2

M−j , (2.15)

where f 4 g means that on the range 0 [ k1 [ p/2 we have inequalities
cf [ g [ df for some constants c and d.

Defining the anisotropic length

l(k1)=`w(k1) R(k1) 4M−j/2+k1, (2.16)

the condition which generalizes the one used in ref. 12 is that the sector
length should not be bigger than that anisotropic length. (The analysis in
ref. 12 was of course simpler since for a circular Fermi surface the curva-
ture radius is constant). This leads to the idea that k1 or an equivalent
quantity should be sliced according to a geometric progression from 1 to
M−j/2 to form the angular sectors in this model.

For symmetry reasons it is convenient to introduce a new orthogonal
but not normal basis in momentum space (e+, e−), defined by e+=
(1/2)(p, p) and e−=(1/2)(−p, p). Indeed if we call (k+, k−) the coordi-
nates of a momentum k in this basis, the Fermi surface is given by the
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simple equations k+=±1 or k−=±1. This immediately follows from the
identity

cos k1+cos k2=2 cos(pk+/2) cos(pk−/2). (2.17)

(Note however that the periodic b.c. are more complicated in that new
basis). Instead of slicing e(kF) and k1, it is then more symmetric to slice
directly cos(pk+/2) and cos(pk−/2).

Guided by these considerations we introduce the partition of unity

1=C
i

s=0
vs(r); ˛

v0(r)=1−u(M2r)

vs=us+1 for 1 [ s [ i−1

vi(r)=u(M2ir)

(2.18)

and define

Ci(k)= C
s=(s+, s− )

Ci, s(k) (2.19)

where

Ci, s(k)=Ci(k) vs+[cos
2(pk+/2)] vs− [cos

2 pk−/2)]. (2.20)

We remark that using (2.11) in order for Ci, s not to be 0, we need to have
s++s− \ i−2. We define the ‘‘depth’’ l(s) of a sector to be l=
s++s− −i+2.

To get a better intuitive picture of the sectors, we remark that they can
be classified into different categories:

— the sectors (0, i) and (i, 0) are called the middle-face sectors

— the sectors (s, i) and (i, s) with 0 < s < i are called the face sectors

— the sector (i, i) is called the corner sector

— the sectors (s, s) with (i−2)/2 [ s < i are called the diagonal
sectors

— the others are the general sectors

Finally the general or diagonal sectors of depth 0 for which s++s−
=i−2 are called border sectors.

If we consider the projection onto the (k+, k−) plane, taking into
account the periodic b.c. of the Brillouin zone, the general and diagonal
sectors have 8 connected components, the face sectors have 4 connected
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components, the middle face sectors and the corner sector have 2 connected
components. In the three dimensional space-time, if we neglect the discre-
tization of the Matsubara frequencies, these numbers would double except
for the border sectors.

2.3. Scaled Decay

Lemma 1. Using Gevrey cutoffs of degree a < 1, the propagator
Ci, s obeys the scaled decay

|Ci, s | [ c.M−i−le−c[di, s(x, y)]
a

(2.21)

where

di, s(x, y)={M−i |x0−y0 |+M−s+ |x+−y+|+M−s− |x− −y− |}, (2.22)

and c is some constant.

Proof. This is essentially Fourier analysis and integration by parts. If
x=(n1, n2) ¥ Z2, we define (x+, x−)=(p/2)(n1+n2, n2−n1). The vector
(x+, x−) then belongs to (p/2) Z2 but with the additional condition that x+
and x− have the same parity.

Defining, for X ¥ [(p/2) Z ]2

Di, s(X)=(1/2)
1
8b

C
k0

F
+2

−2
dk+ F

+2

−2
dk− e i(k0x0+k+x++k− x− )

×
ui[k

2
0+4 cos

2(pk+/2) cos2(pk−/2)]
ik0−2 cos(pk+/2) cos(pk−/2)

×vs+[cos
2(pk+/2)] vs− [cos

2(pk−/2)] (2.23)

we note that Ci, s(X)=Di, s(X) for X satisfying the parity condition.
(Remember the Jacobian p

2

2 from dk1 dk2 to dk+ dk− , and the initial
domain of integration that is doubled.)

The volume of integration trivially gives a factor M−i for the k0 sum
and factorsM−s+ andM−s− for the k+ and k− integration (see (2.28) later).
The integrand is trivially bounded by M i on the integration domain, and
this explains the prefactor cM−i−l in (2.21).

We then apply standard integration by parts techniques to formulate
the decay. From, e.g., Lemma 10 in ref. 6 we know that to obtain the
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scaled decay of Lemma 1 we have only to check the usual derivative
bounds in Fourier space:

> “n0
“kn00

“
n+

“kn++

“
n−

“kn−0
D̂i, s > [ A.BnM in0M s+n+M s− n−(n!)1/a (2.24)

where n=n0+n++n− , and the derivative “

“k0
really means the natural finite

difference operator (1/2pT)(f(k0+2pT)−f(k0)) acting on the discrete
Matsubara frequencies. The norm is the ordinary sup norm.

But from (2.23),

D̂i, s(k)=
1
16b

ui[k
2
0+4 cos

2(pk+/2) cos2(pk−/2)]
ik0−2 cos(pk+/2) cos(pk−/2)

×vs+[cos
2(pk+/2)] vs− [cos

2(pk−/2)] (2.25)

and the derivatives are bounded easily using the standard rules for deri-
vation, product and composition of Gevrey functions, or by hand, using
the support properties of the vs+ and vs− functions. For instance a deriva-
tive “

“k+
can act on the vs+[cos

2(pk+/2)] factor, in which case it is easily
directly bounded by cM s+ for some constant c. When it acts on
ui[k

2
0+4 cos

2(pk+/2) cos2(pk−/2)] it is easily bounded by c.M2i−s+ −2s−

hence by c.M s+, using the relation s++s− \ i−2. When it acts on the
denominator [ik0−2 cos(pk+/2) cos(pk−/2)]−1. it is bounded by c.M i−s− ,
hence again by c.M s+, using the relation s++s− \ i−2. Finally when it acts
on a cos(pk+/2) created by previous derivations, it costs directly c.M s+.
The factorial factor (n!)1/a in (2.24) comes naturally from deriving the
cutoffs, which are Gevrey functions of order a; deriving other factors give
smaller factorials (with power 1 instead of 1/a).

Finally a last remark: to obtain the lemma for the last slice,
i=imax(T), one has to take into account the fact that x0 lies in a compact
circle, so that there is really no long-distance decay to prove.

2.4. Support Properties

If Ci, s(k) ] 0, the momentum k must obey the following bounds:

|k0 | [`2 MM−i (2.26)

˛M
−1 [ |cos(pk±/2)| [ 1 for s±=0,

M−s± −1 [ |cos(pk±/2)| [`2 M−s± for 1 [ s± [ i−1,

|cos(pk±/2)| [`2 M−i for s±=i.

(2.27)
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In the support of our slice in the first Brillouin zone we have |k+| < 2 and
|k− | < 2 (this is not essential but the inequalities are strict because i \ 1). It
is convenient to associate to any such component k± a kind of ‘‘fractional
part’’ called q± defined by q±=k± −1 if k± \ 0 and q±=k±+1 if k± < 0,
so that 0 [ |q± | [ 1. Then the bounds translate into

˛2/pM [ |q± | [ 1 for s±=0,

2M−s±/pM [ |q± | [`2 M−s± for 1 [ s± [ i−1,

|q± | [`2 M−i for s±=i.

(2.28)

2.5. Momentum Conservation Rules at a Vertex

Let us consider that the four momenta k1, k2, k3, k4, arriving at a
given vertex v belong to the support of the four sectors s1, s2, s3, s4, in
slices i1, i2, i3, i4. In Fourier space the vertex (2.6) implies constraints on
the momenta, after the infinite volume limit has been taken. Each spatial
component of the sum of the four momenta must be an integer multiple of
2p in the initial basis, and the sum of the four Matsubara frequencies must
also be zero.

In our tilted basis (e+, e−), this translates into the conditions:

k1, 0+k2, 0+k3, 0+k4, 0=0, (2.29)

k1,++k2,++k3,++k4,+=2n+, (2.30)

k1, −+k2, −+k3, −+k4, −=2n− , (2.31)

where n+ and n− must have identical parity.
We want to rewrite the two last equations in terms of the fractional

parts q1, q2, q3 and q4.
Since an even sum of integers which are ±1 is even, we find that

(2.30) and (2.31) imply

q1,++q2,++q3,++q4,+=2m+, (2.32)

q1, −+q2, −+q3, −+q4, −=2m− , (2.33)

with m+ and m− integers. Let us prove now that except in very special
cases, these integers must be 0. Since |qj, ± | [ 1, |m± | [ 2. But |qj, ± |=1 is
possible only for sj, ±=0. Therefore |m± |=2 implies sj, ±=0, -j. Now
suppose e.g., |m+|=1. Then sj,+ is 0 for at least two values of j. Indeed for
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sj, ± ] 0 we have |qj, ± | [`2 M−1, and assuming 3`2 M−1 < 1, Eq. (2.32)
could not hold.

We have therefore proved

Lemma 2. m+=0 unless sj,+ is 0 for at least two values of j, and
m−=0 unless sj, − is 0 for at least two values of j.

Let us analyze in more detail equations (2.32) and (2.33) for
|m+|=|m− |=0. Consider e.g., (2.32). By a relabeling we can assume
without loss of generality that s1,+ [ s2,+ [ s3,+ [ s4,+ Then either s1,+=i1
or s1,+ < i1, in which case combining equations (2.32) and (2.28) we must
have:

3`2 M−s2,+ \ 2M−s1,+/pM, (2.34)

which means

s2,+ [ s1,++1+
log(3p/`2)

logM
. (2.35)

This implies

|s2,+−s1,+| [ 1 (2.36)

ifM> 3p/`2 , which we assume from now on.
The conclusion is:

Lemma 3. If m±=0, either the smallest index s1, ± coincides with
its scale i1, or the two smallest indices among sj, ± differ by at most one
unit.

Now we can summarize the content of both lemmas in a slightly
weaker but simpler lemma:

Lemma 4. (A) (Single Slice Case). The two smallest indices
among sj,+ for j=1, 2, 3, 4 differ by at most one unit, and the two smallest
indices among sj, − for j=1, 2, 3, 4 differ by at most one unit.

(B) Multislice Case. The two smallest indices among sj,+ for
j=1, 2, 3, 4 differ by at most one unit or the smallest one, say s1,+ must
coincide with its scale i1, which must then be strictly smaller than the three
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other scales i2, i3 and i4. Exactly the same statement holds independently
for the minus direction.

3. THE EXPANSION

For simplicity let us prove the theorem for the pressure:

p= lim
VQ.

1
|V|

log Z(V), (3.1)

Z(V)=F dmCi (k̄, k) e
l >V d

3x(;a k̄k)
2 (x) (3.2)

where dmCi (k̄, k) is the Grassmann Gaussian measure of covariance Ci.
(The proof extends without difficulty to any Schwinger function at fixed
external momenta).

We develop each field and antifield into a sum over sectors, obtaining
a collection of sectors {s}. For each vertex j there are four field or anti-
fields, hence four sectors called s1j , s

2
j , s

3
j and s4j . Integrating over the

Grassmann measure, Z(V) becomes:

Z(V)=C
n

ln

n!
F
Vn
d3x1 · · · d3xn C

aj, bj

C
{s}

˛x1, a1, s11 x1, b1, s21 · · · xn, an, s1n xn, bn, s2n
x1, a1, s31 x1, b1, s41 · · · xn, an, s3n xn, bn, s4n

ˇ

where we used Cayley’s notation for the determinants:

˛ uj, a, s
vk, b, sŒ
ˇ=det(dabdssŒCi, s(uj−vk)) (3.3)

and aj, bj are the spin indices.
We know that if we expand the Cayley determinant the pressure is

given by the sum over all connected vacuum graphs with one particular
vertex fixed at the origin (using translation invariance). But this formula is
not suited for convergence. Instead we want to connect the vertices of the
connected vacuum graphs by a tree formula, because these formulas
together with Gram’s inequality on the remaining determinant are the most
convenient to prove convergence. (15, 20) However we want this formula
ordered with respect to increasing values of the depth index l=
s++s− −i+2 (which runs between 0 and i+2), so that tree lines with
lowest depth are expanded first. This is conveniently done using the Taylor
jungle formula [ref. 16, Theorem IV.3]. We obtain:
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p=C
n
pnln (3.4)

pn=
1
n!

C
{a, b, s}

C
J

E(J) D
n

j=1
F dxj d(x1)

× D
a ¥T

F
1

0
dwa Ci, aa, sa (xa, x̄a) det left (Ci, s(w)) (3.5)

where J=(F0 …F1 … · · · …Fi+1 …Fi+2=T) is a layered object called a
jungle in ref. 16), E(J) being an inessential sign. Such a jungle is an
increasing sequence of forests Fj. A forest is simply a set of lines which do
not make loops, hence in contrast with a tree it can possibly have several
connected components. Here the sum is constrained over the jungles whose
last layer Fi+2=T must be a real tree T connecting the n vertices. This
constraint arises because we are computing a connected function, namely
the pressure. The notation detleft(Ci(w)) means the determinant made of the
fields and antifields left after extraction of the tree propagators. It is there-
fore a n+1 by n+1 square matrix of the Cayley type similar to (3.3), but
with an additional multiplicative parameter depending on the interpolating
parameters {w}. More precisely, its (f, g) entry between field f and anti-
field g is zero unless the spin and sectors for f and g coincide. In that case
let q(f, j) be 1 if field f hooks to vertex j and zero otherwise. Let also lf
be the depth of a field or antifield f. The (f, g) entry of the determinant
left in (3.5) is then:

Ci(w)fg=ds(f) s(g)da(f) b(g) C
n

j=1
C
n

k=1
q(f, j) q(g, k)

×wJ, lf(j, k)({w}) Ci, a(f), s(f)(xj, xk) (3.6)

where wJ, l(j, k)({w}) is given by a rather complicated formula:

— If the vertices j and k are not connected by Fl, then
wJ, l(j, k)({w})=0

— If the vertices j and k are connected byFl−1, then wJ, l(j, k)({w})=1

— If the vertices j and k are connected by Fl, but not by Fl−1, then
wJ, l(j, k)({w}) is the infimum of the wa parameters for a in the unique
path in the reduced forest Fl/Fl−1 connecting the two vertices. (16) 4 The

4 The reduced forest Fl/Fl−1 is as usual the one in which all the connected components of
Fl−1 have been contracted to a single vertex.

natural convention is that F−1=” and that wJ, l(j, j)=1.

706 Rivasseau



We will only need to know that the matrix wJ, l(j, k)({w}) is a positive
n by n matrix with entries labeled by the vertices j and k. This is enough to
bound these interpolation parameters by 1 in Gram’s bound for the
detleft(Ci(w)). This is explained in detail in refs. 15 and 18.

Now at any given level l the forest Fl defines a certain set of c(l) dif-
ferent connected components (some of them eventually reduced to a trivial
isolated vertex). To each such connected component one can associate an
object Gk

l , k=1, 2,..., c(l), which has a well defined number of internal
vertices and a well defined even number of external fields e(Gk

l ). These
external fields are the fields of index greater than l hooked to the internal
vertices, which are themselves joined together by the forest Fl. In addition
to the internal tree connecting the internal vertices this object contains a set
of internal fields still forming a determinant. Therefore Gk

l is not exactly a
subgraph, since expanding the determinant would create a collection of
subgraphs in the ordinary sense. It is nevertheless a kind of generalization
of the notion of subgraph. The connected components Gk

l play a funda-
mental role in any multislice analysis; (17) their inclusion relations form an
other tree, the so-called Gallavotti–Nicolò tree.

Remark that the final tree T plus the collection {s} of sectors for all
fields obviously determine the full layered tree structure J and the con-
nected components Gk

l at level l, together with their number of external
legs e(Gk

l ). Hence the sums over a, b, s and J in (3.5) are redundant, and
can be replaced by a simpler sum over a, b, s and T.

Anticipating on what follows, the power counting of the two point
connected components Gk

l (those for which e(Gk
l )=2) is marginal. We will

need to identify the pair of external fields of these components also called
‘‘bipeds,’’ in order to take into account their extra momentum conservation
rule. The bipeds b (together with the full final graph which we call G) form
a tree for the inclusion relation, called B. This tree is not exactly the ‘‘clus-
tering tree structure’’ (6) or ‘‘Gallavotti–Nicolò’’ tree, whose nodes are the
connected components Gk

l and whose lines depict their inclusion relation
(the Gallavotti–Nicolò tree is not to be confused with T). It is rather a
subtree, in the sense that it is made of those nodes of the ‘‘Gallavotti–
Nicolò’’ tree that correspond to bipeds, together with the lines which
represent their inclusion relations. We include also in B the bare vertices
from which each biped is made on, and we picture it as follows:

Every biped is pictured as a cross, every bare vertex as a dot. There is
an inclusion line from each dot to the smallest biped containing it, and
from each biped to the unique next bigger biped containing it. These inclu-
sion lines which form the forest B are pictured as downwards arrows in
Fig. 2. To recover finally a tree, the last vertex or root, pictured as a box,
corresponds to the full graph G which contains all the maximal bipeds and
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Fig. 2. The forest B.

the remaining dots (in our case of the pressure, it cannot be a biped itself
since it is a vacuum graph).

For each biped b ¥B we also fix the two external fields k̄b and kb of
the biped. They must be hooked to two vertices in b, vb and v̄b hence to two
dots for which the path to the root using the downwards arrows in Fig. 2
passes through b. Remark indeed that k̄b and kb must be hooked to two
different vertices, since tadpoles obviously vanish in this theory at half-
filling (by the particle-hole symmetry). Obviously also the sectors for the
fields k̄b and kb, namely s̄b and sb must have the largest depth index l
among the four sectors hooked respectively to vb and v̄b, otherwise b would
not be a connected component Gk

l for some l. By exact momentum con-
servation, the external momentum of the biped must belong to the support
of these two sectors. Hence they must have equal or neighboring indices s+
and s− . Also when b varies, the fields k̄b and kb, and also the vertices vb
and v̄b are all disjoint. This is a more subtle property. It is true because by
momentum conservation, a field cannot be an external field for two bipeds
at two different scales (since, necessarily, the biggest would be one-particle
reducible, and momentum conservation would be violated).5

5 Strictly speaking, since our C.0 cutoffs have some overlap, this is true only if we define a
biped as a component Gk

l with the external scale at least equal to the maximal internal scale
plus 2 (not plus 1), that is with a strict gap between internal and external scales. This ines-
sential complication is left to the reader. The two point connected components without such
a strict gap do not create any divergence at all. They can be treated therefore as ordinary
connected components, with more than two external legs, in the power counting below.
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The set of these data (k̄b, kb) for all b ¥B−{G} is denoted EB. By the
previous remarks, it can be described as an even set V (the external vertices
of the bipeds), plus a partition of this set into pairs vb and v̄b, one for each
b, and, again for each b, the choice of one field kb hooked to vb and one
antifield k̄b hooked to v̄b.

We now fix B, EB, {a, b}, and T, and sum over those {s} that give
rise to these data. The constraint that {s} give rise to these data is
indicated by a prime in the corresponding sum. Remark in particular the
constraint that for any b ¥B the depth l(kb) must be maximal among the
four depths l1, l2, l3, l4 of the sectors hooked to vb and the depth l(k̄b) must
be maximal among the four depths l1, l2, l3, l4 of the sectors hooked to v̄b,
otherwise the subgraph b would not appear as a connected component Gk

l .
To take into account the momentum conservation constraints we

introduce now for each vertex the function qj(s)=q(s
1
j , s

2
j , s

3
j , s

4
j ) which

is 1 if the condition of Lemma 4 is satisfied and 0 otherwise. We introduce
also for each two-point subgraph b of the forest B the constraint qb(s) that
states that the sectors of its two external legs sb and s̄b must overlap, that
is must be equal or nearest neighbors. These insertions are free since the
contributions for which these q functions are not 1 are zero. They must be
done before taking the Gram bound, which destroys the Fourier oscilla-
tions responsible for momentum conservation at each vertex. We get:

pn=
1
n!

C
B, EB
{a, b},T

C
−

{s}
E(T) D

n

j=1
F dxj d(x1) D

a ¥T

F
1

0
dwa Ci, aa, sa (xa, x̄a)

×D
n

j=1
qj(s) D

b ¥B

qb(s) det left (Ci(w)). (3.7)

We apply now Gram’s inequality to the determinant as explained in
detail in ref. 18. For that purpose we rewrite Ci, s as a product of two half
propagators in Fourier space. Taking the square root of the positive matrix
w we obtain the bound:

det left (Ci(w)) [ c
n D
f left

M−(i+lf)/2 (3.8)

where the product runs over all fields and antifields left by the tree expan-
sion. Indeed the half-propagators corresponding to Ci, s may be chosen to
contribute each to one half of the full propagator scaling factor M−i−lf in
(2.21).
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We can now integrate over the positions of the vertices save the fixed
one x1 using the Gevrey scaled decay (2.21) and obtain a bound on the nth
order of perturbation theory

|pn | [
cn

n!
M−2i C

Ba , EB
{a, b},T

C
−

{s}
D
n

j=1
qj(s) D

b ¥B

qb(s) D
a ¥T

M la D
f
M−lf/2 (3.9)

where the product over f now runs over all the 4n fields and antifields of
the theory.

We can check by induction that:

D
f
M−lf/2=D

i+2

l=0
D
k
M−e(Gkl )/2, (3.10)

D
a ¥T

M la=M−i−3 D
i+2

l=0
D
k
M1. (3.11)

(to prove the last equality, remember that T is a subtree in each connected
component Gk

l ). We obtain the bound

|pn | [
cn

n!
M−2i C

Ba , EB
{a, b},T

C
−

{s}
D
n

j=1
qj(s) D

b ¥B

qb(s) D
i+2

l=0
D
k
M1−e(Gkl )/2. (3.12)

Therefore we have exponential decay in index space except for the
bipeds b ¥B. Indeed for e \ 4 we have e/2−1 \ e/4. At each vertex j we
have four sectors with depths l1j , l

2
j , l

3
j and l

4
j . The data in EB in particular

contain the information about the set V of vertices for which the line with
maximal index, l4j , is the external line of a biped in B. Therefore we obtain:

|pn | [
cn

n!
M−2i C

Ba , EB
{a, b},T

C
−

{s}
D
n

j=1
qj(s) D

j ¨ V
M−(l1j+l

2
j+l

3
j+l

4
j )/4 D

j ¥ V
M−(l1j+l

2
j+l

3
j )/4.
(3.13)

Now we need the following lemma:

Lemma 5. Suppose the four sectors s1, s2, s3, s4 have depths
l1, l2, l3 and l4. Then for fixed s4

C
s1, s2, s3

q(s1, s2, s3, s4) M−(l1+l2+l3)/4 [ c.i. (3.14)
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Proof. Let us say that sj collapses with sk in the ± direction, and let
us write sj 4 ±sk if |s±, j−s±, k | [ 1. The function q ensures two collapses,
one in each direction, for pairs with minimal values of the corresponding s
indices. So it ensures that sj 4+sk and sjŒ 4 −skŒ for some j ] k and
jŒ ] kŒ. Now let us make three remarks:

(a) Since l=s++s− −i+2 \ 0, for a given sector summing over s+
knowing s− or vice versa can be done at the cost of a constant, using only a
fraction of the decayM−l/4.

(b) When a pair j, k collapses in any direction, one element of the
pair, say k is not the fixed sector (k ] 4). Using remark a, for fixed sj we
can sum over sk at the cost of a constant, using only a fraction of the decay
M−lk/4.

(c) If a sector sm does not collapse with any other sector in any
direction, we must have some sector j which collapses in both directions
with an other sector. This means that s+, m \ s+, j and s−, m \ s−, j. But then
lm \ lj. If m ] 4 we have therefore

M−lm/4=M−(lm −lj)/4M−lj/4 [M−[(s+, m −s+, j)+(s−, m −s−, j)]/4, (3.15)

and we can sum over sm knowing sj again at the cost of a constant using a
fraction of the decayM−lm/4.

Putting these three remarks together, we obtain the lemma. Indeed by
remark c the eventual sums over sectors which collapse with no other ones
cost only constants. The sums over sectors that under collapse relations are
connected to the fixed sector s4 also cost nothing by remark b. Finally
there can remain at most one non trivial equivalence class under collapse
which does not contain the fixed sector s4. We pay a single factor i to fix
say some sj,+ within this class, and using again Remarks a and b we can
achieve all other sums in that class paying only some constants. L

Now to prove the theorem we return to (3.13).
We can use the same strategy as in refs. 6 and 7 to sum over sectors,

following the natural ordering from leaves to root of our tree T. Every
vertex is related to the root vertex by a single path in the tree which starts
by a well defined half-line hooked to that vertex called the root half-line.
We will pay for the sector sum at that vertex keeping the sector of that root
half line fixed. This last sector will be fixed later when the vertex bearing
the other half of the tree line associated to the root half-line is considered.
For the root vertex (of a vacuum graph) there will be still one last sector to
fix. By Lemma 5, each sum over the sectors of a regular vertex (not in V)
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costs therefore only c.i. Now from the data in EB we know how the ver-
tices in V group into pairs v̄b, vb associated to the bipeds b, and by the
momentum conservation constraint qb we know that s4v̄b 4 s

4
vb
and l4v̄b 4 l

4
vb
.

Moreover we can choose the root to be external for a maximal biped b0
of B, so that either v̄b or vb is the root (if b=b0), or s

4
v̄b
or s4vb is a root half-

line (because the root, being outside, is either left or right of the two point
subgraph). Suppose the root half-line is s4v̄b . We can now ‘‘cut’’ one line of
the path Pb which joins in the tree T these two external vertices of b/B
(the reduced graph in which maximal subbipeds of B inside b have been
collapsed to a single point). This arbitrary cut simply means that for that
tree line we forget the constraint that identifies the sectors of the two cor-
responding half-lines. (This certainly only enlarges the sum in (3.13)). We
can now follow the same summation process as before, but separately for
the two halfs of the graph b which are on both side of the cut. For the part
on the side of s4v̄b we sum towards that half-line and for the other part we
sum towards the half-line s4vb as if it was a new root. Finally since s4v̄b 4 s

4
vb
,

we can sum over the sectors for both v̄b and vb at once using Lemma 5 and
we get

C
s
4
v̄b

fixed, s4v̄b
4 s

4
vb

s
1
v̄b
, s2v̄b

, s3v̄b
, s1vb

, s2vb
, s3vb

qv̄b (s) qvb (s) M
−(1/4)(l1v̄b

+l2v̄b
+l3v̄b

+l1vb
+l2vb

+l3vb
) [ (c.i)2. (3.16)

We have finally to pay for summing over the last root sector. When the
root vertex is not in V, we have a last sum to perform over some s4j but we
can use the decay factor M−l4j in (3.13) to pay for it. So this last sum costs
an additional factor i. But when the root is say vb0 , there is no M−l4vb decay
in (3.13) and this last sum therefore costs not a factor i but a factor i2.

Hence we arrive at:

|pn | [M−2iin+2 C
B, EB, {a, b},T

cn

n!
. (3.17)

The sum over spin indices {a, b} trivially costs at most 4n, so from
now on let us work with fixed {a, b}. But to bound the sum over B, EB
and T, one has to exploit the fact that there is a balance: roughly speaking
for B small the sum over B, EB does not cost much and we have Cayley’s
theorem which states that the number of possible trees T at order n is nn−2;
for B large (many bipeds) the choice of which vertices belong to which
biped may be costly, but once it is done, the compatible trees are much
fewer. This is captured in the following lemma:
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Lemma 6. There exists some constant c such that

C
B, EB,T

1
n!

[ cn. (3.18)

Proof. Recall that c is our generic name for a constant. Let us call
Nb=|B| the total number of bipeds. For each b ¥B (including the box G)
let us call db the number of links in B whose down end is b and nb [ db the
number of bare vertices that belong to b and no smaller biped (dots in
Fig. 2 with a down link ending at b). Remark that ; b nb=n since each dot
belongs to some element of B (since we included G in B). Moreover
Nb [ n/2 and ; b db=n+Nb−1 [ 2n. Therefore paying cn we can fix Nb

and the numbers nb and db for each b.
We perform inductively the counting over the cardinal of the set

(Ba , EB,T) starting from the leaves in Fig. 2 towards the root. To choose
the nb vertices in each biped we have to pay n!/<b nb!. To build the tree T
we build its restriction to each reduced element of B, which contains
db vertices (nb ordinary four point vertices and db−nb reduced two point
vertices).

Now it is well known that there are less than cn different planar trees
obtained by connecting n vertices to a root as in Fig. 2. Let y be a subset of
such trees differing one from the other only through some permutation of
the branches. Let By be the family of all B which can be associated with at
least one element of the subset y.

Since by Cayley’s theorem the number of trees on n vertices is nn−2

hence bounded by cnn!, the number of possible choices for T is bounded
by <b cdbdb!, hence by cn <b db!. Finally to choose EB we fix for each b
the two fields kb and k̄b. Since as remarked above they must be hooked to
the nb vertices that belong to b and no smaller biped, the number of choices
for EB is bounded by <b (4nb)2 hence by cn since ; b nb=n. Multiplying
all these numbers we obtain a bound, but here comes the subtle point: in
this way we have counted <b (db−nb)! times each configuration B, EB, T.
Indeed the tree in Fig. 2 is unlabeled. A permutation group with
<b (db−nb)! elements acts on it, permuting at each fork b the db−nb
maximal bipeds in b, and each permutation on one element of B, EB,T
built in the way described above gives again the same element.

Hence taking these remarks into account we obtain:

C
B, EB,T

1 [ cn sup
y

C
B ¥ By, EB,T

1 [ cnn!D
b

db!
nb! (db−nb)!

[ cnn! (3.19)

which completes the proof of the lemma. L
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Proof of Theorem 1. Combining this lemma and (3.17), our final
bound is

|pn | [ i2M−2i(c.i)n. (3.20)

This achieves the proof of Theorem 1. Remark that for a more general
Schwinger function the prefactor i2.M−2i would be different but this has no
influence on the radius of convergence. L

4. CONVERGENT CONTRIBUTIONS IN THE MULTISLICE THEORY

To analyze the multislice theory, we remark first that by Lemma 1,
integration over a vertex using the decay of a line with indices i and l costs
M2i+l. Therefore it is convenient to select the multislice tree for a graph by
optimizing over the index r=I(i+l/2), where I is the integer part, so that
r remains integer. From now on, we may forget the integer part I which is
inessential.

In other words since i in this section is no longer fixed, we define the
sectors as triplets s=(i, s+, s−), with 1 [ i [ imax(T), 0 [ s+ [ i, 0 [ s− [ i,
and s++s− \ i−2. The depth l of a sector is still l=s++s− −i+2, and the
momentum cutoff usi for a sector is

us(k0, k+, k−)=ui[k
2
0+4 cos

2(pk+/2) cos2(pk−/2)]

×vs+[cos
2(pk+/2)] vs− [cos

2(pk−/2)]. (4.1)

The propagator in sector s is in momentum space

Cs(k0, k+, k−)=
us(k0, k+, k−)

ik0−2 cos(pk+/2) cos(pk−/2)
. (4.2)

The full propagator (with u.v. cutoff corresponding to the inessential
removal of the slice i=0) is

C=C
s

Cs= C
rmax(T)

r=1
Cr, rmax(T)=1+3imax(T)/2, (4.3)

the rth slice of the propagator being defined as the sum over all sectors
with i+l/2=r:

Cr= C
s

i(s)+l(s)/2=r

Cs=C
l
Cr, l, Cr, l= C

s
i(s)+l(s)/2=r

l(s)=l

Cs. (4.4)
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For more generality we shall formulate this time our theorem for
Schwinger functions S2p with p \ 2. We perform the same Taylor jungle
expansion as in the previous section, but with respect to increasing values
of the r index, and obtain (omitting the inessential dependence on the
external momenta or positions):

S2p=C
n
S2p, n ln, (4.5)

S2p, n=
1
n!

C
{a, b, s}

C
J

E(J)D
v
F dxv D

a ¥T

F
1

0
dwa Ci, sa (xa, ya) det left (Ci, s(w)),

(4.6)

where J=(F0 …F1 … · · · …Frmax(T)=T).
Knowing all the scales and sectors of all the fields, the connected

components Gk
r at each level r again form a Gallavotti–Nicolò tree for the

inclusion relations. As seen below, in the r space power counting is stan-
dard, namely the bipeds are linearly divergent, and the ‘‘quadrupeds,’’
namely the non-trivial6 components Gk

r in the Gallavotti–Nicolò tree which

6 Non-trivial here means ‘‘not reduced to a single vertex.’’

have e(Gk
r )=4, are marginal. The bipeds require renormalization and will

be treated in another paper. In this section we state two theorems: one for
the ‘‘completely convergent’’ part of the expansion, that is the one which
has neither bipeds nor quadrupeds, and the other for the ‘‘biped-free’’ part
of the expansion which has no biped but can have quadrupeds. Indeed the
first theorem is easier, so that order of presentation seems more pedagogical.

Therefore we define the structure of all divergent components as
B 2 Q with inclusion relations exactly as in Fig. 2. B is the set of bipeds,
hence of connected components Gk

r with e(Gk
r )=2 and Q is the set of

quadrupeds, including the full graph G pictured as the box in Fig. 2, which
may or may not have four external legs, depending whether p=2 or p > 2.
As in the previous section we also define EQ as the data for the external
legs of every quadruped q ¥ Q.

We organize our sum as in the previous section and get the analog of
(3.7)

S2p, n=
1
n!

C
B, EB
Q, EQ

{a, b},T

C
−

{s}
E(T)D

v
F dxv D

a ¥T

F
1

0
dwa Ci, sa (xa, ya) det left (Ci.s(w)).

(4.7)
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The integration > dxv is performed as usually only for the internal vertices.
The completely convergent part of the functions S2p, called Sc2p=
; n S

c
2p, nl

n, is now the sum over all contributions for which B=Q=”,
namely e(Gk

r ) > 4, -r, k (this requires p \ 3):

Sc2p, n=
1
n!

C
B=Q=”
{a, b}T

C
−

{s}
E(T)D

v
F dxv D

a ¥T

F
1

0
dwa Ci, sa (xa, ya) det left (Ci, s(w)).

(4.8)

We can now state our second result:7

7 This definition of Sc2p has the disadvantage not to be cutoff independent. Indeed it includes
not only the sum of all the graphs without two and four point subgraphs, which is a cutoff-
independent object, but also some part of the amplitudes of graphs which do have such two
or four point subgraphs, namely those parts in which these divergent subgraphs do not
appear as connected components Gk

r . However this definition is the most natural one in the
context of a multiscale expansion, and is similar to those of refs. 6, 12, and 14.

Theorem 2. The functions Sc2p are analytic in l for |l log T| [ c
hence their radius of convergence RT at temperature T satisfies

RT \ c/|log T|. (4.9)

Proof. Before Gram’s bound we now introduce only the momentum
conservation constraints at each bare vertex j=1,..., n:

Sc2p, n=
1
n!

C
B=Q=”
{a, b}T

C
−

{s}
E(T) D

n

j=1
qj({s})

×D
v
F dxv D

a ¥T

F
1

0
dwa Ci, sa (xa, ya) det left (Ci, s(w))|x0=0. (4.10)

We can now apply Gram’s inequality to the determinant as in the
previous section, and integrate again over all positions of the internal
vertices (save one in the case of the pressure) using the decay of the tree
propagators.

Since (i+l)/2=r/2+l/4, we obtain, exactly in the same way as (3.9),
the bound (holding external vertices fixed):

|Sc2p, n | [
cn

n!
C

B=Q=”
{a, b}T

C
−

{s}
D
n

j=1
qj({s}) D

a ¥T

M2ra D
f
M−rf/2−lf/4, (4.11)
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where the product over f runs again over all the fields and antifields of the
theory, and the sum over {s} is again constrained to be compatible with
the data (B=Q=”, {a, b},T), as indicated by the prime notation.

Using again (3.10) and (3.11) we obtain in a similar way:

D
f
M−rf/2= D

rmax(T)

r=0
D
k
M−e(Gkr /2), (4.12)

D
a ¥T

M2ra=M−2rmax(T)−2 D
rmax(T)

r=0
D
k
M2, (4.13)

so that apart from a certain n independent factor that cannot influence the
radius of convergence we get:

|Sc2p, n | [
cn

n!
C

B=Q=”
{a, b},T

C
−

{s}
D
n

j=1
[qj({s}) M−(l1j+l

2
j+l

3
j+l

4
j )/4] D

rmax(T)

r=0
D
k
M2−e(Gkr )/2

(4.14)

where at a given vertex j we call l1j ,..., l
4
j the depths of the four sectors

hooked to j.
Since for all r, k such that Gk

r is non-trivial, e(Gk
r ) \ 6, we have

2−e(Gk
r )/2 [ −e(Gk

r )/6 for all such r, k. By a standard argument (see,
e.g., ref. 17) we conclude that if r1j [ · · · [ r4j are the r scales of the four
sectors hooked to j:

D
rmax(T)

r=0
D
k
M2−e(Gkr )/2 [D

j
M−[(r2j −r

1
j )+(r

3
j −r

1
j )+(r

4
j −r

1
j )]/6. (4.15)

Therefore:

|Sc2p, n | [
cn

n!
C

{a, b},T
C
−

{s}
D
n

j=1
qj({s}) M−; 4

k=1 l
k
j /4−;k ] kŒ |r

k
j −r

kŒ
j |/18. (4.16)

Now with a fraction (say half) of the decay factor <j M−;k ] kŒ |r
k
j −r

kŒ
j |/18

it is easy to perform the sum over all r indices for all the fields ( just follow
the tree like in the previous section: at each vertex three r indices can be
summed holding the fourth fixed, which is the one of the tree line going
towards the root, and iterate until the root). It is also possible with a frac-
tion of the decay factor M−; 4

k=1 l
k
j /4 to sum over the indices i once the

indices r have been summed, since i=r−l/2. From now on we consider
therefore the former i indices as summed, although no longer all equal as in
the previous section).
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To sum over the sectors s ±j once scale indices r and i are fixed, we
have to be careful that case B of Lemma 4 must now be used since we are
in a multislice case. The new possibility of case B of Lemma 4 is that at a
given vertex j we can have s1j, ±=i1j < s

k
j, ± , k=2, 3, 4. Let us say that in

this case the vertex j is ± special. In that case, since skj, ± [ ikj [ r
k
j , we have

|skj, ± −s
1
j, ± | [ r

k
j −i

1
j=rkj −r

1
j+l

1
j/2 [ |r

k
j −r

1
j |+l

1
j/2. (4.17)

It is therefore easy to bound a fraction of the decay factor in (4.16) by the
product over the special vertices and directions of another decay factor
suitable for the summation of s indices. For instance:

D
j± special

M−; 4
k=1 l

k
j /8−;k ] kŒ |r

k
j −r

kŒ
j |/36 [ D

j± special
M−;k ] kŒ |sk, ± −skŒ, ± |/108. (4.18)

Using this decay factor it is trivial to sum up all the s± indices of a special
vertex, holding one fixed, namely the one of the tree line going towards the
root. The indices in the other direction of the special vertex are easily
summed with an other fraction of the l decay factor, namely M−; 4

k=1 l
k
j /8

Finally the sum over indices of the regular vertices which are special neither
in the plus nor in the minus direction can be handled exactly as in the pre-
vious section, using up the remaining <j not special M−; 4

k=1 l
k
j /8 factor. Indeed

their momentum conservation is identical to Case A of Lemma 5. The cor-
responding sums cost therefore at most |cimax(T)|n, hence at most |c log T|n

This achieves the proof of Theorem 2. L

Returning to (4.7), we define the biped-free part of the functions S2p,
called Sbf2p=; n S

bf
2p, nl

n, as the sum over all contributions for which B=”
namely e(Gk

r ) > 2, -r, k (this requires p \ 2):

Sbf2p, n=
1
n!

C
B=”

Q, EQ, {a, b}T

C
−

{s}
E(T)D

v
F dxv D

a ¥T

F
1

0
dwa Ci, sa (xa, ya) det left (C(w)).

(4.19)

We can now state our third result:8

8 This result involves again a cutoff-dependent quantity, Sbf2p , but with a little additional care it
should be possible to prove it also for a cutoff independent quantity, namely the sum of all
skeleton graphs. Indeed we know that extracting the self energy part of the theory can be
done constructively, at the cost of a slightly more complicated expansion than a simple tree
expansion (see ref. 7, Appendix B).

Theorem 3. The functions Sbf2p are analytic in l for |l log2 T| [ c
hence their radius of convergence RT at temperature T satisfies

RT \ c/|log2 T|. (4.20)
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Proof. Before Gram’s bound we now introduce not only the
momentum conservation constraints at each bare vertex j=1,..., n but also
for each quadruped q ¥ Q:

Sbf2p, n=
1
n!

C
Q, EQ

{a, b},T

C
−

{s}
E(T) D

n

j=1
qj({s})D

q
qq({s})

×D
v
F dxv D

a ¥T

F
1

0
dwa Ci, sa (xa, ya) det left (C(w))|x0=0. (4.21)

We can now apply Gram’s inequality to the determinant as in the
previous section, and integrate again over all positions of the vertices save
one using the decay of the tree propagators. We obtain the analog of
(4.14):

|Sbf2p, n | [
cn

n!
C

Q, EQ
{a, b},T

C
−

{s}
D
q ¥ Q

qq({s})

×D
n

j=1
qj({s}) M−(l1j+l

2
j+l

3
j+l

4
j )/4 D

rmax(T)

r=0
D
k
M2−e(Gkr )/2. (4.22)

We have no longer complete exponential decay between the scales of
the legs of any vertex. But the only missing piece corresponds to the
quadrupeds, for which in (4.22) the factor 2−e(Gk

r )/2 is zero. This
suggests an inductive bound which works inside each reduced component
q/Q. The necessary data to perform this analysis are given in (Q, EQ). Like
in the previous section, let us introduce nq and dq as the number of ordi-
nary vertices and the total number of vertices in the reduced component
q/Q, so that ; q ¥ Q nq=n and ; q ¥ Q (dq−nq)=|Q| [ n−1.9 Let us fix the

9 The fact that any forest of quadrupeds has at most n−1 elements is a rather obvious state-
ment, proved for instance in ref. 21, Lemma C1).

largest scale rq inside q. Because the momentum conservation constraints
for the external legs of q are included in (4.22), the sums over r scales inside
every reduced component q/Q (including the last one G corresponding to
the box in Fig. 2) can be performed exactly like in the previous paragraph,
at a cost of cdq using the line with scale rq as root for the r indices summa-
tion. Similarly the sums over the s± internal indices could be easily
bounded by cdq |log T|dq, using any given sector of an external line of q as a
root for these summations. But this bound is not optimal. Let us prove that
we can do better and perform these sums at a cost of only cdq |log T|dq −1,
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holding all four external sectors of the quadruped fixed. By remark c in
Lemma 5 and the analysis above, we pay a |log T| factor only for the ver-
tices with two disjoint collapsing pairs. If one internal vertex of q or the
external legs of q do not have disjoint collapsing pairs, we gain directly the
necessary |log T| factor for q later in the analysis. Otherwise, following the
tree towards the root of the quadruped, like in Section 3, we pay only at
most |log T|dq −1, because there is at least one sector sum fixed by the
external data in addition to the root: it is the one corresponding to the
collapsing pair of the external legs of q not containing the root.10 This

10 We remark that disjoint collapsing pairs at a vertex correspond exactly to the combinatoric
of a f4 vector model. We know that for a Feynman graph we would pay in fact |log T|cc

where cc is the number of closed cycles. It is well known that this number for a quadruped
with d vertices is at most d−1. Our argument is a slight adaptation of this fact, necessary
because we know only a spanning tree, not the exact loop structure and closed cycles of a
quadruped.

proves the improved bound cdq |log T|dq −1 for the s± internal summations.
Now for each q we have also in addition to pay a single additional

|log T| factor to fix the scale rq. Multiplying all these factors, we get for
fixed (Q, EQ,T):

C
−

{s}
D
q ¥ Q

qq({s}) D
n

j=1
qj({s}) M−(l1j+l

2
j+l

3
j+l

4
j )/4 D

rmax(T)

r=0
D
k
M2−e(Gkr )/2

[D
q
cdq |log T|dq [ cn |log T|2n−1. (4.23)

This completes the proof of Theorem 3, modulo the analog of Lemma 6:

Lemma 7. There exists some constant c such that

C
Q, EQ
{a, b}T

1
n!

[ cn. (4.24)

Proof. The proof is identical to the one of Lemma 6, except for the
little change that a given leg can now be external to several quadrupeds. It
is easy to take care of this detail: in the sum over EQ there is simply a
factor d4q instead of n2b . But since ; q dq [ 2n, it is again bounded by cn. L

We expect the radius of analyticity for the full theory (with bipeds) at
temperature T to satisfy the same bound as Theorem 3. Indeed thanks to
particle-hole symmetry, at half-filling the square Fermi-surface is preserved
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under the RG flow. In contrast with the jellium case, there is therefore no
need to include any counterterm to formulate the analyticity theorem for
the full theory with bipeds. Nevertheless power counting must be
improved, i.e., one has to transfer some internal convergence to the exter-
nal legs, hence to prove that by some Ward identity, the apparently
divergent two point contributions are really convergent. This is postponed
to a future paper.
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